Calogero-moser Space and Kostka Polynomials

نویسندگان

  • MICHAEL FINKELBERG
  • VICTOR GINZBURG
چکیده

We consider the canonical map from the Calogero-Moser space to symmetric powers of the affine line, sending conjugacy classes of pairs of n×n-matrices to their eigenvalues. We show that the character of a natural C∗-action on the scheme-theoretic zero fiber of this map is given by Kostka polynomials.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quasiinvariants of Coxeter groups and m-harmonic polynomials

The space of m-harmonic polynomials related to a Coxeter group G and a multiplicity function m on its root system is defined as the joint kernel of the properly gauged invariant integrals of the corresponding generalised quantum Calogero-Moser problem. The relation between this space and the ring of all quantum integrals of this system (which is isomorphic to the ring of corresponding quasiinva...

متن کامل

ACTION OF COXETER GROUPS ON m-HARMONIC POLYNOMIALS AND KNIZHNIK–ZAMOLODCHIKOV EQUATIONS

The Matsuo–Cherednik correspondence is an isomorphism from solutions of Knizhnik–Zamolodchikov equations to eigenfunctions of generalized Calogero–Moser systems associated to Coxeter groups G and a multiplicity function m on their root systems. We apply a version of this correspondence to the most degenerate case of zero spectral parameters. The space of eigenfunctions is then the space Hm of m...

متن کامل

/ 94 04 04 2 v 1 7 A pr 1 99 4 On the Two Gap Locus for the Elliptic Calogero – Moser Model

We give an analytical description of the locus of the two-gap elliptic potentials associated with the corresponding flow of the Calogero– Moser system. We start with the description of Treibich–Verdier two– gap elliptic potentials. The explicit formulae for the covers, wave functions and Lamé polynomials are derived, together with a new Lax representation for the particle dynamics on the locus....

متن کامل

Generalised discriminants, deformed quantum Calogero-Moser system and Jack polynomials

It is shown that the deformed Calogero-Moser-Sutherland (CMS) operators can be described as the restrictions on certain affine subvarieties of the usual CMS operators for infinite number of particles. The ideals of these varieties are shown to be generated by the Jack symmetric functions related to the Young diagrams with special geometry. Combinatorial formulas for the related super-Jack and s...

متن کامل

Bc∞ Calogero-moser Operator and Super Jacobi Polynomials

An infinite-dimensional version of Calogero-Moser operator of BC-type and the corresponding Jacobi symmetric functions are introduced and studied, including the analogues of Pieri formula and Okounkov’s binomial formula. We use this to describe all the ideals linearly generated by the Jacobi symmetric functions and show that the deformed BC(m, n) Calogero-Moser operators, introduced in our earl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001